Circuit diagram
Notes:
I have used a pair of BC548 transistors in this circuit. Although not
strictly RF transistors, they still give good results. I have used an
ECM Mic insert from Maplin Electronics, order code FS43W. It is a two
terminal ECM, but ordinary dynamic mic inserts can also be used, simply
omit the front 10k resistor. The coil L1 was again from Maplin, part
no. UF68Y and consists of 7 turns on a quarter inch plastic former with a
tuning slug. The tuning slug is adjusted to tune the transmitter.
Actual range on my prototype tuned from 70MHz to around 120MHz. The
aerial is a few inches of wire. Lengths of wire greater than 2 feet may
damp oscillations and not allow the circuit to work. Although RF
circuits are best constructed on a PCB, you can get away with veroboard,
keep all leads short, and break tracks at appropriate points.
One final point, don't hold the circuit in your hand and try to speak.
Body capacitance is equivalent to a 200pF capacitor shunted to earth,
damping all oscillations. I have had some first hand experience of this
problem.
author:Andy Collinson,
website: http://www.zen22142.zen.co.uk/
Sunday, July 29, 2012
FM Transmitter Bug Circuit
Circuit diagram
Notes:
This small transmitter uses a hartley type oscillator. Normally the capacitor in the tank circuit would connect at the base of the transistor, but at VHF the base emitter capacitance of the transistor acts as a short circuit, so in effect, it still is. The coil is four turns of 18swg wire wound around a quarter inch former. The aerial tap is about one and a half turns from the supply end. Audio sensitivity is very good when used with an ECM type microphone insert
author:David, radio_david@yahoo.com
Notes:
This small transmitter uses a hartley type oscillator. Normally the capacitor in the tank circuit would connect at the base of the transistor, but at VHF the base emitter capacitance of the transistor acts as a short circuit, so in effect, it still is. The coil is four turns of 18swg wire wound around a quarter inch former. The aerial tap is about one and a half turns from the supply end. Audio sensitivity is very good when used with an ECM type microphone insert
author:David, radio_david@yahoo.com
3W FM Transmitter Circuit
This is the schematic for an FM transmitter with 3 to 3.5 W output
power that can be used between 90 and 110 MHz. Although the stability
isn't so bad, a PLL can be used on this circuit.
This is a circuit that I've build a few years ago for a friend, who used it in combination with the BLY88 amplifier to obtain 20 W output power. From the notes that I made at the original schematic, it worked fine with a SWR of 1 : 1.05 (quite normal at my place with my antenna).
Circuit diagram
Parts:
R1,R4,R14,R15 10K 1/4W Resistor
R2,R3 22K 1/4W Resistor
R5,R13 3.9K 1/4W Resistor
R6,R11 680 Ohm 1/4W Resistor
R7 150 Ohm 1/4W Resistor
R8,R12 100 Ohm 1/4W Resistor
R9 68 Ohm 1/4W Resistor
R10 6.8K 1/4W Resistor
C1 4.7pF Ceramic Disc Capacitor
C2,C3,C4,C5,C7,C11,C12 100nF Ceramic Disc Capacitor
C6,C9,C10 10nF Ceramic Disc Capacitor
C8,C14 60pF Trimmer Capacitor
C13 82pF Ceramic Disc Capacitor
C15 27pF Ceramic Disc Capacitor
C16 22pF Ceramic Disc Capacitor
C17 10uF 25V Electrolytic Capacitor
C18 33pF Ceramic Disc Capacitor
C19 18pF Ceramic Disc Capacitor
C20 12pF Ceramic Disc Capacitor
C21,C22,C23,C24 40pF Trimmer Capacitor
C25 5pF Ceramic Disc Capacitor
L1 5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L2,L3,L5,L7,L9 6-hole Ferroxcube Wide band HF Choke (5 WDG)
L4,L6,L8 1.5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L10 8 WDG, Dia 5 mm, 1 mm CuAg, Space 1 mm
D1 BB405 or BB102 or equal (most varicaps with C = 2-20 pF [approx.] will do)
Q1 2N3866
Q2,Q4 2N2219A
Q3 BF115
Q5 2N3553
U1 7810 Regulator
MIC Electret Microphone
MISC PC Board, Wire For Antenna, Heatsinks
Notes:
1. Email Rae XL Tkacik with questions, comments, etc.
2. The circuit has been tested on a normal RF-testing breadboard (with one side copper). Make some connections between the two sides. Build the transmitter in a RF-proof casing, use good connectors and cable, make a shielding between the different stages, and be aware of all the other RF rules of building.
3. Q1 and Q5 should be cooled with a heat sink. The case-pin of Q4 should be grounded.
4. C24 is for the frequency adjustment. The other trimmers must be adjusted to maximum output power with minimum SWR and input current.
5. Local laws in some states, provinces or countries may prohibit the operation of this transmitter. Check with the local authorities.
author:Rae XL Tkacik, vocko@atlas.cz
website: http://www.aaroncake.net/circuits/index.asp
This is a circuit that I've build a few years ago for a friend, who used it in combination with the BLY88 amplifier to obtain 20 W output power. From the notes that I made at the original schematic, it worked fine with a SWR of 1 : 1.05 (quite normal at my place with my antenna).
Circuit diagram
Parts:
R1,R4,R14,R15 10K 1/4W Resistor
R2,R3 22K 1/4W Resistor
R5,R13 3.9K 1/4W Resistor
R6,R11 680 Ohm 1/4W Resistor
R7 150 Ohm 1/4W Resistor
R8,R12 100 Ohm 1/4W Resistor
R9 68 Ohm 1/4W Resistor
R10 6.8K 1/4W Resistor
C1 4.7pF Ceramic Disc Capacitor
C2,C3,C4,C5,C7,C11,C12 100nF Ceramic Disc Capacitor
C6,C9,C10 10nF Ceramic Disc Capacitor
C8,C14 60pF Trimmer Capacitor
C13 82pF Ceramic Disc Capacitor
C15 27pF Ceramic Disc Capacitor
C16 22pF Ceramic Disc Capacitor
C17 10uF 25V Electrolytic Capacitor
C18 33pF Ceramic Disc Capacitor
C19 18pF Ceramic Disc Capacitor
C20 12pF Ceramic Disc Capacitor
C21,C22,C23,C24 40pF Trimmer Capacitor
C25 5pF Ceramic Disc Capacitor
L1 5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L2,L3,L5,L7,L9 6-hole Ferroxcube Wide band HF Choke (5 WDG)
L4,L6,L8 1.5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L10 8 WDG, Dia 5 mm, 1 mm CuAg, Space 1 mm
D1 BB405 or BB102 or equal (most varicaps with C = 2-20 pF [approx.] will do)
Q1 2N3866
Q2,Q4 2N2219A
Q3 BF115
Q5 2N3553
U1 7810 Regulator
MIC Electret Microphone
MISC PC Board, Wire For Antenna, Heatsinks
Notes:
1. Email Rae XL Tkacik with questions, comments, etc.
2. The circuit has been tested on a normal RF-testing breadboard (with one side copper). Make some connections between the two sides. Build the transmitter in a RF-proof casing, use good connectors and cable, make a shielding between the different stages, and be aware of all the other RF rules of building.
3. Q1 and Q5 should be cooled with a heat sink. The case-pin of Q4 should be grounded.
4. C24 is for the frequency adjustment. The other trimmers must be adjusted to maximum output power with minimum SWR and input current.
5. Local laws in some states, provinces or countries may prohibit the operation of this transmitter. Check with the local authorities.
author:Rae XL Tkacik, vocko@atlas.cz
website: http://www.aaroncake.net/circuits/index.asp
15W Fm-transmitter Circuit
It was five years ago when I did an attempt to build my first
fm-transmitter. It ended in a giant faillure. The only thing it did was
interferring with our tv-set. Looking back it was due to the lack of
information I had. A schematic was my only help. Now, five years later, I
know a lot more about electro-technics. So I searched for a schematic
of a stable, tested fm-transmitter with a far reach. I will put all
information you'll have to know in my page. I made drawings to make
things clearer. As said before: I'm still building it, so I will add
information every time I made progress. It would be wise for you out
there not to start building untill I'm ready and have tested it. It has
been succesfully built before, but my succes will give you a double
security. I remind you of the fact that I can also fail.
Intro
Building a good fm-transmitter(88-110Mhz) begins with getting a good schematic. You don't have to understand the precise working of the transmitter to build it. But some basic information won't harm. A transmitter alone is, as you probably know, is not enough to start your radio-station. In the simplest form you need 4 things. First an input device such as an amplifiler you also use with your home-stereo.
You can also use a walkman. Details about input-devices in the page: "Input". Second you need a regulated power-supply. In this case a 14-18 Volts/2,5-3,5 Ampere. One of the most influencial things you need is antenna and coax-cable. More about this later on. And finally the transmitter itself. You can devide the transmitter in two main parts: the oscilator and the amplifiler. The oscilator converts electric sound information into electromagnetic waves. The amplifiler gives these waves
a bigger amplitude.
Building
It's stable and has output of 15-18 watts. This enough to terrorize your wide surroundings at the fm-band.
The most often used technique to connect the components to each other is soldering them on a double sided copper-board. Another way is connecting the components floating. It is cheaper but very tricky. Below you see the copper-board layout(PCB). I designed it looking closely at the root scheme.
To get this pattern in copper surface you use a acid bath. Use a water-resistant permanent marker to paint your own copper-board black in the pattern the shown above. Color the back side ompletely black. The grid-squares are 0,5*0,5 cm each.
When the acid has eaten the non-painted copper away you must remove the complet thin layer of black paint with sandpaper. Don't remove too much copper with it.
So, now you have the surface to solder the electric components on.
Now a few basic rules for good soldering:
1. Use a special electronics-solderingrod with a slim top.
2. Use soldering-metal with an anti-oxidant-fluid core.
3. Don't heat the components! Heat the connection-point on your PCB.
4. Make sure that the surface is not too smooth.
5. Don't use too much metal.
6. Don't let the soldering metal form a bridge beetween two copper-surfaces.
7. If you're smart you start from the middle of your prepaired board.
In this way you'll have enough space.
Below the schematic. The yellow lines are pieces of copperboard that devide the transmitter in 3 parts. This is essential. Without them, internal interferrence will ruin your signal.
Parts
There are some components that need extra attention. Transistors usually have 3 or 4 different
wires comin' out. If you connect these wires in the wrong way the transmitter won't work. It may even explode. The picture below shows how to prevent from such an event.
You can find the numbers and letters back in the soldering schematic.
Coils also require extra attention. You can buy the coils trough ferrite in the shop, but the other ones have to be made yourself. Use 1mm AgCu wire. A coil like 7x/d=10mm/l=15mm, goes round 7 times, has an diameter of 10 millimeter and is long 15 millimeters. The best way to make a coil is to bend it around a pencil or other cilindrical shaped object tight. The diameter of the object is always d-coil minus 1 mm. In this case 9mm. As I said: bend the wire round (in this case 7times) with the revolves tight together. To get the desired length stretch the coil when still around the pencil
If you decide to build the transmitter and buy the parts, this list will be handy:
compon.doc
READ THIS E-MAIL I RECEIVED
Hello,
just to give some input: I have built the 15W FM transmitter you describe about 4.5 years ago.
The PCB lay out and component selection is still the same as it was then and after some modifications, I had an average output power of 16.8W @ 98.6 MHz (measured with Rhode and Schwarz equipement). You will need additional filtering on the power lines otherwise a stable power supply for the modulating circuit cannot be guaranteed. The legs of the modulating diode are, at best, kept long for extra capacitance. This to make sure you fall within the FM band because before I did that, I had
problems falling withing the 88-108 MHz. I was actually interfering with the police and fire brigade radio bands (Belgium). Of course, this is not the intention. I also advice you and readers to carefully check the orientation of the BLY88 because my professor blew one up due to lack of specification and inclarities in the datasheets (the actual pin out of the component changed a few years ago, resulting in a swapped emitter and collector - no good if you position it wrong!!! (the white cap flies of)). You will also need to play with the spacing between the windings of the different coils in order to get a good coupling between the different stages. I short circuited parts of the coils and made them smaller than specified to have near-optimal coupling. I also added extra ferrite bead coils for extra decoupling of the power lines, and used a very good shielding. Above 16.8W there is coupling (primarily through the air) between the output and the modulating/input stage and oscillation occurs. So for I have not found any other solution than lower the output power. Both extra decoupling
and extra shielding had no effect (my transmitter is built into a fully closed aluminium box with seperating plates that are fully connected to the case or ground plane on the PCB, except from where tracks run (0.5mm spacing provided)). Also, use a good heat sink for the last power stage!!!
I hope this information will be usefull. If you have any questions, please ask.
Kind regards,
Erwin Huybreghts
Electronic Engineer
Space applications and space instruments division
Verhaert D&D
Belgium
Author:
website: http://www.geocities.com/SouthBeach/3433/transmit.htm
Intro
Building a good fm-transmitter(88-110Mhz) begins with getting a good schematic. You don't have to understand the precise working of the transmitter to build it. But some basic information won't harm. A transmitter alone is, as you probably know, is not enough to start your radio-station. In the simplest form you need 4 things. First an input device such as an amplifiler you also use with your home-stereo.
You can also use a walkman. Details about input-devices in the page: "Input". Second you need a regulated power-supply. In this case a 14-18 Volts/2,5-3,5 Ampere. One of the most influencial things you need is antenna and coax-cable. More about this later on. And finally the transmitter itself. You can devide the transmitter in two main parts: the oscilator and the amplifiler. The oscilator converts electric sound information into electromagnetic waves. The amplifiler gives these waves
a bigger amplitude.
Building
It's stable and has output of 15-18 watts. This enough to terrorize your wide surroundings at the fm-band.
The most often used technique to connect the components to each other is soldering them on a double sided copper-board. Another way is connecting the components floating. It is cheaper but very tricky. Below you see the copper-board layout(PCB). I designed it looking closely at the root scheme.
To get this pattern in copper surface you use a acid bath. Use a water-resistant permanent marker to paint your own copper-board black in the pattern the shown above. Color the back side ompletely black. The grid-squares are 0,5*0,5 cm each.
When the acid has eaten the non-painted copper away you must remove the complet thin layer of black paint with sandpaper. Don't remove too much copper with it.
So, now you have the surface to solder the electric components on.
Now a few basic rules for good soldering:
1. Use a special electronics-solderingrod with a slim top.
2. Use soldering-metal with an anti-oxidant-fluid core.
3. Don't heat the components! Heat the connection-point on your PCB.
4. Make sure that the surface is not too smooth.
5. Don't use too much metal.
6. Don't let the soldering metal form a bridge beetween two copper-surfaces.
7. If you're smart you start from the middle of your prepaired board.
In this way you'll have enough space.
Below the schematic. The yellow lines are pieces of copperboard that devide the transmitter in 3 parts. This is essential. Without them, internal interferrence will ruin your signal.
Parts
There are some components that need extra attention. Transistors usually have 3 or 4 different
wires comin' out. If you connect these wires in the wrong way the transmitter won't work. It may even explode. The picture below shows how to prevent from such an event.
You can find the numbers and letters back in the soldering schematic.
Coils also require extra attention. You can buy the coils trough ferrite in the shop, but the other ones have to be made yourself. Use 1mm AgCu wire. A coil like 7x/d=10mm/l=15mm, goes round 7 times, has an diameter of 10 millimeter and is long 15 millimeters. The best way to make a coil is to bend it around a pencil or other cilindrical shaped object tight. The diameter of the object is always d-coil minus 1 mm. In this case 9mm. As I said: bend the wire round (in this case 7times) with the revolves tight together. To get the desired length stretch the coil when still around the pencil
If you decide to build the transmitter and buy the parts, this list will be handy:
compon.doc
READ THIS E-MAIL I RECEIVED
Hello,
just to give some input: I have built the 15W FM transmitter you describe about 4.5 years ago.
The PCB lay out and component selection is still the same as it was then and after some modifications, I had an average output power of 16.8W @ 98.6 MHz (measured with Rhode and Schwarz equipement). You will need additional filtering on the power lines otherwise a stable power supply for the modulating circuit cannot be guaranteed. The legs of the modulating diode are, at best, kept long for extra capacitance. This to make sure you fall within the FM band because before I did that, I had
problems falling withing the 88-108 MHz. I was actually interfering with the police and fire brigade radio bands (Belgium). Of course, this is not the intention. I also advice you and readers to carefully check the orientation of the BLY88 because my professor blew one up due to lack of specification and inclarities in the datasheets (the actual pin out of the component changed a few years ago, resulting in a swapped emitter and collector - no good if you position it wrong!!! (the white cap flies of)). You will also need to play with the spacing between the windings of the different coils in order to get a good coupling between the different stages. I short circuited parts of the coils and made them smaller than specified to have near-optimal coupling. I also added extra ferrite bead coils for extra decoupling of the power lines, and used a very good shielding. Above 16.8W there is coupling (primarily through the air) between the output and the modulating/input stage and oscillation occurs. So for I have not found any other solution than lower the output power. Both extra decoupling
and extra shielding had no effect (my transmitter is built into a fully closed aluminium box with seperating plates that are fully connected to the case or ground plane on the PCB, except from where tracks run (0.5mm spacing provided)). Also, use a good heat sink for the last power stage!!!
I hope this information will be usefull. If you have any questions, please ask.
Kind regards,
Erwin Huybreghts
Electronic Engineer
Space applications and space instruments division
Verhaert D&D
Belgium
Author:
website: http://www.geocities.com/SouthBeach/3433/transmit.htm
Subscribe to:
Posts (Atom)
Popular Posts
-
Circuit diagram I use the lm10 IC because it has a reference voltage and that is useful for dc power supply. With two ICs can take d...
-
Circuit diagram How to calculate transformer rating The basic formula is P=VI and between input output of the transformer we have Power...
-
Low-cut and Bass controls Output power: 40W on 8 Ohm and 60W on 4 Ohm loads Amplifier circuit diagram: Amplifier parts: R1 6K8 ...
-
circuit diagram Parts: P1 22K Log.Potentiometer (Dual-gang for stereo) P2 100K Log.Potentiometer (Dual-gang for stereo) R1 820...